terminate statement

This commit is contained in:
Magnus von Wachenfeldt 2021-09-01 11:10:03 +02:00
parent d894570bd4
commit e3c35c525f
Signed by: magnus
GPG Key ID: A469F7D71D09F795
2 changed files with 183 additions and 148 deletions

View File

@ -9,7 +9,7 @@ module.exports = {
privateExport: function (key, options) { privateExport: function (key, options) {
const nbuf = key.n.toBuffer(); const nbuf = key.n.toBuffer();
let ebuf = Buffer.alloc(4) let ebuf = Buffer.alloc(4);
ebuf.writeUInt32BE(key.e, 0); ebuf.writeUInt32BE(key.e, 0);
//Slice leading zeroes //Slice leading zeroes
while (ebuf[0] === 0) ebuf = ebuf.slice(1); while (ebuf[0] === 0) ebuf = ebuf.slice(1);

View File

@ -1,148 +1,183 @@
var ber = require('asn1').Ber; /**
var _ = require('../utils')._; * PKCS1 padding and signature scheme
var utils = require('../utils'); */
const PRIVATE_OPENING_BOUNDARY = '-----BEGIN RSA PRIVATE KEY-----'; var BigInteger = require('../libs/jsbn');
const PRIVATE_CLOSING_BOUNDARY = '-----END RSA PRIVATE KEY-----'; var crypt = require('crypto');
var SIGN_INFO_HEAD = {
md2: Buffer.from('3020300c06082a864886f70d020205000410', 'hex'),
md5: Buffer.from('3020300c06082a864886f70d020505000410', 'hex'),
sha1: Buffer.from('3021300906052b0e03021a05000414', 'hex'),
sha224: Buffer.from('302d300d06096086480165030402040500041c', 'hex'),
sha256: Buffer.from('3031300d060960864801650304020105000420', 'hex'),
sha384: Buffer.from('3041300d060960864801650304020205000430', 'hex'),
sha512: Buffer.from('3051300d060960864801650304020305000440', 'hex'),
ripemd160: Buffer.from('3021300906052b2403020105000414', 'hex'),
rmd160: Buffer.from('3021300906052b2403020105000414', 'hex')
};
const PUBLIC_OPENING_BOUNDARY = '-----BEGIN RSA PUBLIC KEY-----'; var SIGN_ALG_TO_HASH_ALIASES = {
const PUBLIC_CLOSING_BOUNDARY = '-----END RSA PUBLIC KEY-----'; 'ripemd160': 'rmd160'
};
module.exports = { var DEFAULT_HASH_FUNCTION = 'sha256';
privateExport: function (key, options) {
options = options || {};
var n = key.n.toBuffer(); module.exports = {
var d = key.d.toBuffer(); isEncryption: true,
var p = key.p.toBuffer(); isSignature: true
var q = key.q.toBuffer(); };
var dmp1 = key.dmp1.toBuffer();
var dmq1 = key.dmq1.toBuffer();
var coeff = key.coeff.toBuffer();
var length = n.length + d.length + p.length + q.length + dmp1.length + dmq1.length + coeff.length + 512; // magic module.exports.makeScheme = function (key, options) {
var writer = new ber.Writer({size: length}); function Scheme(key, options) {
this.key = key;
this.options = options;
}
writer.startSequence(); Scheme.prototype.maxMessageLength = function () {
writer.writeInt(0); if (this.options.encryptionSchemeOptions && this.options.encryptionSchemeOptions.padding == 3) {
writer.writeBuffer(n, 2); return this.key.encryptedDataLength;
writer.writeInt(key.e); }
writer.writeBuffer(d, 2); return this.key.encryptedDataLength - 11;
writer.writeBuffer(p, 2); };
writer.writeBuffer(q, 2);
writer.writeBuffer(dmp1, 2);
writer.writeBuffer(dmq1, 2);
writer.writeBuffer(coeff, 2);
writer.endSequence();
if (options.type === 'der') { /**
return writer.buffer; * Pad input Buffer to encryptedDataLength bytes, and return Buffer.from
} else { * alg: PKCS#1
return PRIVATE_OPENING_BOUNDARY + '\n' + utils.linebrk(writer.buffer.toString('base64'), 64) + '\n' + PRIVATE_CLOSING_BOUNDARY; * @param buffer
} * @returns {Buffer}
}, */
Scheme.prototype.encPad = function (buffer, options) {
options = options || {};
var filled;
if (buffer.length > this.key.maxMessageLength) {
throw new Error("Message too long for RSA (n=" + this.key.encryptedDataLength + ", l=" + buffer.length + ")");
}
privateImport: function (key, data, options) { if (this.options.encryptionSchemeOptions && this.options.encryptionSchemeOptions.padding == 3) {
options = options || {}; //RSA_NO_PADDING treated like JAVA left pad with zero character
var buffer; filled = Buffer.alloc(this.key.maxMessageLength - buffer.length);
filled.fill(0);
return Buffer.concat([filled, buffer]);
}
if (options.type !== 'der') { /* Type 1: zeros padding for private key encrypt */
if (Buffer.isBuffer(data)) { if (options.type === 1) {
data = data.toString('utf8'); filled = Buffer.alloc(this.key.encryptedDataLength - buffer.length - 1);
} filled.fill(0xff, 0, filled.length - 1);
filled[0] = 1;
filled[filled.length - 1] = 0;
if (_.isString(data)) { return Buffer.concat([filled, buffer]);
var pem = utils.trimSurroundingText(data, PRIVATE_OPENING_BOUNDARY, PRIVATE_CLOSING_BOUNDARY) } else {
.replace(/\s+|\n\r|\n|\r$/gm, ''); /* random padding for public key encrypt */
buffer = Buffer.from(pem, 'base64'); filled = Buffer.alloc(this.key.encryptedDataLength - buffer.length);
} else { filled[0] = 0;
throw Error('Unsupported key format'); filled[1] = 2;
} var rand = crypt.randomBytes(filled.length - 3);
} else if (Buffer.isBuffer(data)) { for (var i = 0; i < rand.length; i++) {
buffer = data; var r = rand[i];
} else { while (r === 0) { // non-zero only
throw Error('Unsupported key format'); r = crypt.randomBytes(1)[0];
} }
filled[i + 2] = r;
}
filled[filled.length - 1] = 0;
return Buffer.concat([filled, buffer]);
}
};
var reader = new ber.Reader(buffer); /**
reader.readSequence(); * Unpad input Buffer and, if valid, return the Buffer object
reader.readString(2, true); // just zero * alg: PKCS#1 (type 2, random)
key.setPrivate( * @param buffer
reader.readString(2, true), // modulus * @returns {Buffer}
reader.readString(2, true), // publicExponent */
reader.readString(2, true), // privateExponent Scheme.prototype.encUnPad = function (buffer, options) {
reader.readString(2, true), // prime1 return buffer;
reader.readString(2, true), // prime2 };
reader.readString(2, true), // exponent1 -- d mod (p1)
reader.readString(2, true), // exponent2 -- d mod (q-1)
reader.readString(2, true) // coefficient -- (inverse of q) mod p
);
},
publicExport: function (key, options) { Scheme.prototype.sign = function (buffer) {
options = options || {}; var hashAlgorithm = this.options.signingSchemeOptions.hash || DEFAULT_HASH_FUNCTION;
hashAlgorithm = SIGN_ALG_TO_HASH_ALIASES[hashAlgorithm] || hashAlgorithm;
var n = key.n.toBuffer(); var hasher = crypt.createHash(hashAlgorithm);
var length = n.length + 512; // magic hasher.update(buffer);
var hash = this.pkcs1pad(hasher.digest(), hashAlgorithm);
var res = this.key.$doPrivate(new BigInteger(hash)).toBuffer(this.key.encryptedDataLength);
var bodyWriter = new ber.Writer({size: length}); return res;
bodyWriter.startSequence(); };
bodyWriter.writeBuffer(n, 2);
bodyWriter.writeInt(key.e);
bodyWriter.endSequence();
if (options.type === 'der') { Scheme.prototype.verify = function (buffer, signature, signature_encoding) {
return bodyWriter.buffer; if (this.options.encryptionSchemeOptions && this.options.encryptionSchemeOptions.padding == 3) {
} else { //RSA_NO_PADDING has no verify data
return PUBLIC_OPENING_BOUNDARY + '\n' + utils.linebrk(bodyWriter.buffer.toString('base64'), 64) + '\n' + PUBLIC_CLOSING_BOUNDARY; return false;
} }
}, var hashAlgorithm = this.options.signingSchemeOptions.hash || DEFAULT_HASH_FUNCTION;
hashAlgorithm = SIGN_ALG_TO_HASH_ALIASES[hashAlgorithm] || hashAlgorithm;
publicImport: function (key, data, options) { if (signature_encoding) {
options = options || {}; signature = Buffer.from(signature, signature_encoding);
var buffer; }
if (options.type !== 'der') { var hasher = crypt.createHash(hashAlgorithm);
if (Buffer.isBuffer(data)) { hasher.update(buffer);
data = data.toString('utf8'); var hash = this.pkcs1pad(hasher.digest(), hashAlgorithm);
} var m = this.key.$doPublic(new BigInteger(signature));
if (_.isString(data)) { return m.toBuffer().toString('hex') == hash.toString('hex');
var pem = utils.trimSurroundingText(data, PUBLIC_OPENING_BOUNDARY, PUBLIC_CLOSING_BOUNDARY) };
.replace(/\s+|\n\r|\n|\r$/gm, '');
buffer = Buffer.from(pem, 'base64');
}
} else if (Buffer.isBuffer(data)) {
buffer = data;
} else {
throw Error('Unsupported key format');
}
var body = new ber.Reader(buffer); /**
body.readSequence(); * PKCS#1 zero pad input buffer to max data length
key.setPublic( * @param hashBuf
body.readString(0x02, true), // modulus * @param hashAlgorithm
body.readString(0x02, true) // publicExponent * @returns {*}
); */
}, Scheme.prototype.pkcs0pad = function (buffer) {
var filled = Buffer.alloc(this.key.maxMessageLength - buffer.length);
filled.fill(0);
return Buffer.concat([filled, buffer]);
};
/** Scheme.prototype.pkcs0unpad = function (buffer) {
* Trying autodetect and import key var unPad;
* @param key if (typeof buffer.lastIndexOf == "function") { //patch for old node version
* @param data unPad = buffer.slice(buffer.lastIndexOf('\0') + 1, buffer.length);
*/ } else {
autoImport: function (key, data) { unPad = buffer.slice(String.prototype.lastIndexOf.call(buffer, '\0') + 1, buffer.length);
// [\S\s]* matches zero or more of any character }
if (/^[\S\s]*-----BEGIN RSA PRIVATE KEY-----\s*(?=(([A-Za-z0-9+/=]+\s*)+))\1-----END RSA PRIVATE KEY-----[\S\s]*$/g.test(data)) {
module.exports.privateImport(key, data);
return true;
}
if (/^[\S\s]*-----BEGIN RSA PUBLIC KEY-----\s*(?=(([A-Za-z0-9+/=]+\s*)+))\1-----END RSA PUBLIC KEY-----[\S\s]*$/g.test(data)) { return unPad;
module.exports.publicImport(key, data); };
return true;
}
return false; /**
} * PKCS#1 pad input buffer to max data length
}; * @param hashBuf
* @param hashAlgorithm
* @returns {*}
*/
Scheme.prototype.pkcs1pad = function (hashBuf, hashAlgorithm) {
var digest = SIGN_INFO_HEAD[hashAlgorithm];
if (!digest) {
throw Error('Unsupported hash algorithm');
}
var data = Buffer.concat([digest, hashBuf]);
if (data.length + 10 > this.key.encryptedDataLength) {
throw Error('Key is too short for signing algorithm (' + hashAlgorithm + ')');
}
var filled = Buffer.alloc(this.key.encryptedDataLength - data.length - 1);
filled.fill(0xff, 0, filled.length - 1);
filled[0] = 1;
filled[filled.length - 1] = 0;
var res = Buffer.concat([filled, data]);
return res;
};
return new Scheme(key, options);
};